From solid to granular gases: the steady state for granular materials
نویسندگان
چکیده
منابع مشابه
Kinetic approach to granular gases.
We address the problem of the so-called "granular gases," i.e., gases of massive particles in rapid movement undergoing inelastic collisions. We introduce a class of models of driven granular gases for which the stationary state is the result of the balance between the dissipation and the random forces which inject energies. These models exhibit a genuine thermodynamic limit, i.e., at fixed den...
متن کاملSteady quasi-homogeneous granular gas state
Using Newtonian molecular dynamics we study a gas of inelastic hard disks subject to shear between two planar parallel thermal walls. The system behaves like a Couette flow and it is tuned to produce a steady state that ideally has uniform temperature, uniform density, no energy flux and a linear velocity profile for restitution coefficient in the wide range: 0:3prp1. It is shown that Navier–St...
متن کاملGranular friction, Coulomb failure, and the fluid-solid transition for horizontally shaken granular materials.
We present the results of an extensive series of experiments, molecular dynamics simulations, and models that address horizontal shaking of a layer of granular material. The goal of this work was to better understand the transition between the "fluid" and "solid" states of granular materials. In the experiments, the material-consisting of glass spheres, smooth and rough sand-was contained in a ...
متن کاملHydrodynamic theory for granular gases
A granular gas subjected to a permanent injection of energy is described by means of hydrodynamic equations derived from a moment expansion method. The method uses as reference function not a Maxwellian distribution f(M) but a distribution f(0)=Phif(M), such that Phi adds a fourth cumulant kappa to the velocity distribution. The formalism is applied to a stationary conductive case showing that ...
متن کاملGranular Gases in Compartmentalized Systems
Although both granular gases (GG) and molecular gases (MG) are characterized by random motions of their constituents, phenomena not possible for MG, such as clustering and Maxwell’s demon are reported in GG. The origin of these intriguing phenomena is the dissipative collisions in GG which are coupled to the local density of the GG in a spatially extended or compartmentalized system. Systems wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical and Analytical Methods in Geomechanics
سال: 2013
ISSN: 0363-9061
DOI: 10.1002/nag.2169